Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Public Health ; 11: 1170085, 2023.
Article in English | MEDLINE | ID: covidwho-20231258

ABSTRACT

Purpose: The study aimed to identify potential risk factors for family transmission and to provide precautionary guidelines for the general public during novel Coronavirus disease 2019 (COVID-19) waves. Methods: A retrospective cohort study with numerous COVID-19 patients recruited was conducted in Shanghai. Epidemiological data including transmission details, demographics, vaccination status, symptoms, comorbidities, antigen test, living environment, residential ventilation, disinfection and medical treatment of each participant were collected and risk factors for family transmission were determined. Results: A total of 2,334 COVID-19 patients participated. Compared with non-cohabitation infected patients, cohabitated ones were younger (p = 0.019), more commonly unvaccinated (p = 0.048) or exposed to infections (p < 0.001), and had higher rates of symptoms (p = 0.003) or shared living room (p < 0.001). Risk factors analysis showed that the 2019-nCov antigen positive (OR = 1.86, 95%CI 1.40-2.48, p < 0.001), symptoms development (OR = 1.86, 95%CI 1.34-2.58, p < 0.001), direct contact exposure (OR = 1.47, 95%CI 1.09-1.96, p = 0.010) were independent risk factors for the cohabitant transmission of COVID-19, and a separate room with a separate toilet could reduce the risk of family transmission (OR = 0.62, 95%CI 0.41-0.92, p = 0.018). Conclusion: Patients showing negative 2019-nCov antigen tests, being asymptomatic, living in a separate room with a separate toilet, or actively avoiding direct contact with cohabitants were at low risk of family transmission, and the study recommended that avoiding direct contact and residential disinfection could reduce the risk of all cohabitants within the same house being infected with COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Quarantine , Retrospective Studies , China/epidemiology , Risk Factors
2.
Risk Anal ; 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2298328

ABSTRACT

The virus causing COVID-19 has constantly been mutating into new variants. Some of them are more transmissive and resistant to antibiotics. The current research article aims to examine the airborne transmission of the virus expelled by coughing action in a typical intensive care unit. Both single and sequential coughing actions have been considered to get closer to practical scenarios. The objective is to assess the effectiveness of air change per hour (ACH) on the risk of infection to a healthcare person and how the air change rate influences the dispersion of droplets. Such a study is seldom reported and has significant relevance. A total of four cases were analyzed, of which two were of sequential cough. When the ACH is changed from 6 to 12, the average particle residence time is reduced by ∼7 s. It is found that the risk of infection in the case of sequential cough will be relatively low compared to a single cough if the outlet of the indoor environment is placed above the patient's head. This arrangement also eliminates the requirement of higher ACH, which has significance from an energy conservation perspective.

3.
Communications in Transportation Research ; 3, 2023.
Article in English | Scopus | ID: covidwho-2228261

ABSTRACT

The transit bus environment is considered one of the primary sources of transmission of the COVID-19 (SARS-CoV-2) virus. Modeling disease transmission in public buses remains a challenge, especially with uncertainties in passenger boarding, alighting, and onboard movements. Although there are initial findings on the effectiveness of some of the mitigation policies (such as face-covering and ventilation), evidence is scarce on how these policies could affect the onboard transmission risk under a realistic bus setting considering different headways, boarding and alighting patterns, and seating capacity control. This study examines the specific policy regimes that transit agencies implemented during early phases of the COVID-19 pandemic in USA, in which it brings crucial insights on combating current and future epidemics. We use an agent-based simulation model (ABSM) based on standard design characteristics for urban buses in USA and two different service frequency settings (10-min and 20-min headways). We find that wearing face-coverings (surgical masks) significantly reduces onboard transmission rates, from no mitigation rates of 85% in higher-frequency buses and 75% in lower-frequency buses to 12.5%. The most effective prevention outcome is the combination of KN-95 masks, open window policies, and half-capacity seating control during higher-frequency bus services, with an outcome of nearly 0% onboard infection rate. Our results advance understanding of COVID-19 risks in the urban bus environment and contribute to effective mitigation policy design, which is crucial to ensuring passenger safety. The findings of this study provide important policy implications for operational adjustment and safety protocols as transit agencies seek to plan for future emergencies. © 2023

4.
Communications in Transportation Research ; : 100090, 2023.
Article in English | ScienceDirect | ID: covidwho-2177814

ABSTRACT

The transit bus environment is considered one of the primary sources of transmission of the COVID-19 (SARS-CoV-2) virus. Modeling disease transmission in public buses remains a challenge, especially with uncertainties in passenger boarding, alighting, and onboard movements. Although there are initial findings on the effectiveness of some of the mitigation policies (such as face-covering and ventilation), evidence is scarce on how these policies could affect the onboard transmission risk under a realistic bus setting considering different headways, boarding and alighting patterns, and seating capacity control. This study examines the specific policy regimes that transit agencies implemented during early phases of the COVID-19 pandemic inUSA, in which it brings crucial insights on combating current and future epidemics. We use an agent-based simulation model (ABSM) based on standard design characteristics for urban buses in USA and two different service frequency settings (10-min and 20-min headways). We find that wearing face-coverings (surgical masks) significantly reduces onboard transmission rates, from no mitigation rates of 85% in higher-frequency buses and 75% in lower-frequency buses to 12.5%. The most effective prevention outcome is the combination of KN-95 masks, open window policies, and half-capacity seating control during higher-frequency bus services, with an outcome of nearly 0% onboard infection rate. Our results advance understanding of COVID-19 risks in the urban bus environment and contribute to effective mitigation policy design, which is crucial to ensuring passenger safety. The findings of this study provide important policy implications for operational adjustment and safety protocols as transit agencies seek to plan for future emergencies.

5.
Clin Infect Dis ; 75(Supplement_2): S251-S253, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2051349

ABSTRACT

In July 2021, Public Health-Seattle & King County investigated a coronavirus disease 2019 (COVID-19) outbreak at an indoor event intended for fully vaccinated individuals, revealing unvaccinated staff, limited masking, poor ventilation, and overcrowding. Supporting businesses to develop and implement comprehensive COVID-19 prevention plans is essential for reducing spread in these settings.


Subject(s)
COVID-19 , Music , COVID-19/prevention & control , Disease Outbreaks , Humans , SARS-CoV-2 , Vaccination
6.
Epidemics ; 37: 100524, 2021 12.
Article in English | MEDLINE | ID: covidwho-1574277

ABSTRACT

Nonpharmaceutical interventions for minimizing indoor SARS-CoV-2 transmission continue to be critical tools for protecting susceptible individuals from infection, even as effective vaccines are produced and distributed globally. We developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen transmission during discrete events taking place in a single room within a sub-day time frame, and used it to compare effects of four interventions on reducing secondary SARS-CoV-2 attack rates during a superspreading event by simulating a well-known case study. We found that preventing people from moving within the simulated room and efficacious mask usage appear to have the greatest effects on reducing infection risk, but multiple concurrent interventions are required to minimize the proportion of susceptible individuals infected. Social distancing had little effect on reducing transmission if individuals were randomly relocated within the room to simulate activity-related movements during the gathering. Furthermore, our results suggest that there is potential for ventilation airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from infectious individuals. Maximizing the vertical aerosol removal rate is paramount to successful transmission-risk reduction when using ventilation systems as intervention tools.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Systems Analysis
7.
Environ Res ; 204(Pt A): 111910, 2022 03.
Article in English | MEDLINE | ID: covidwho-1372992

ABSTRACT

India has suffered from the second wave of COVID-19 pandemic since March 2021. This wave of the outbreak has been more serious than the first wave pandemic in 2020, which suggests that some new transmission characteristics may exist. COVID-19 is transmitted through droplets, aerosols, and contact with infected surfaces. Air pollutants are also considered to be associated with COVID-19 transmission. However, the roles of indoor transmission in the COVID-19 pandemic and the effects of these factors in indoor environments are still poorly understood. Our study focused on reveal the role of indoor transmission in the second wave of COVID-19 pandemic in India. Our results indicated that human mobility in the home environment had the highest relative influence on COVID-19 daily growth rate in the country. The COVID-19 daily growth rate was significantly positively correlated with the residential percent rate in most state-level areas in India. A significant positive nonlinear relationship was found when the residential percent ratio ranged from 100 to 120%. Further, epidemic dynamics modelling indicated that a higher proportion of indoor transmission in the home environment was able to intensify the severity of the second wave of COVID-19 pandemic in India. Our findings suggested that more attention should be paid to the indoor transmission in home environment. The public health strategies to reduce indoor transmission such as ventilation and centralized isolation will be beneficial to the prevention and control of COVID-19.


Subject(s)
COVID-19 , Pandemics , Home Environment , Humans , India/epidemiology , SARS-CoV-2 , Ventilation
8.
Environ Res ; 198: 111189, 2021 07.
Article in English | MEDLINE | ID: covidwho-1188561

ABSTRACT

In this paper we develop a simple model of the inhaled flow rate of aerosol particles of respiratory origin i.e. that have been exhaled by other people. A connection is made between the exposure dose and the probability of developing an airborne disease. This allows a simple assessment of the outdoor versus indoor risk of contamination to be made in a variety of meteorological situations. It is shown quantitatively that for most cases, the outdoor risk is orders of magnitude less than the indoor risk and that it can become comparable only for extremely specific meteorological and topographical situations. It sheds light on various observations of COVID-19 spreading in mountain valleys with temperature inversions while at the same time other areas are much less impacted.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/analysis , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL